Tag Archives: Continuous Media Web

The history of Ogg on the Web

In the year 2000, while working at CSIRO as a research scientist, I had the idea that video (and audio) should be hyperlinked content on the Web just like any Web page. Conrad Parker and I developed the vision of a “Continuous Media Web” and called the technology that was necessary to develop “Annodex” for “annotated and indexed media”.

Not many people now know that this was really the beginning of Ogg on the Web. Until then, Ogg Vorbis and the emerging Ogg Theora were only targeted at desktop applications in competition to MP3 and MPEG-2.

Within a few years, we developed the specifications for a markup language for video called CMML that would provide the annotations, anchor points, and hyperlinks for video to make it possible to search and index video, hyperlink into video section, and hyperlink out of video sections.

We further developed the specification of temporal URIs to actually address to temporal offsets or segments in video.

And finally, we developed extensions to the Xiph Ogg framework to allow it to carry CMML, and more generally multi-track codecs. The resulting files were originally called “Annodex files”, but through increasing collaboration with Xiph, the specifications were simplified and included natively into Ogg and are now known as “Ogg Skeleton”.

Apart from specifications, we also developed lots of software to make the vision actually come true. Conrad, in particular, developed many libraries that helped develop software on top of the raw Xiph codecs, which include liboggz and libfishsound. Libraries were developed to deal with CMML and with embedding CMML into Ogg. Apache modules were developed to deal with segmenting sections from Ogg files and deliver them as a reply to a temporal URI request. And finally we actually developed a Firefox extension that would allow us to display the Ogg Theora/Vorbis videos inside a Web Browser.

Over time, a lot more sofware was developed, amongst them: php, perl and python bindings for Annodex, DirectShow filters to have Ogg Theora/Vorbis support on Windows, an ActiveX control for Windows, an authoring tool for CMML on Windows, Ogg format validation software, mobile phone support for Ogg Theora/Vorbis, and a video wiki for CMML and Ogg Theora called cmmlwiki. Several students and Annodex team members at CSIRO helped develop these, including Andre Pang (who now works for Pixar), Zen Kavanagh (who now works for Microsoft), and Colin Ward (who now works for Symbian). Most of the software was released as open source software by CSIRO and is available now either in the Annodex repository or the Xiph repositories.

Annodex technology became increasingly part of Xiph technology as team members also became increasingly part of the Xiph community, such as by now it’s rather difficult to separate out the Annodex people from the Xiph people.

Over time, other projects picked up on the Annodex technology. The first were in fact ethnographic researchers, who wanted their audio-visual ethnographic recordings usable in deeply. Also, other multimedia scientists experimented with Annodex. The first actual content site to publish a large collection of Ogg Theora video with annotations was OpenRoadTrip by Scott Shawcroft and Brandon Hines in 2006. Soon after, Michael Dale and Aphid from Metavid started really using the Annodex set of technologies and contributing to harden the technology. Michael was also a big advocate for helping Wikimedia and Archive.org move to using Ogg Theora.

By 2006, the team at CSIRO decided that it was necessary to develop a simple, cross-platform Ogg decoding and playback library that would allow easy development of applications that need deep control of Ogg audio and video content. Shane Stephens was the key developer of that. By the time that Chris Double from Firefox picked up liboggplay to include Ogg support into Firefox natively, CSIRO had stopped working on Annodex, Shane had left the project to work for Google on Wave, and we eventually found Viktor Gal as the new maintainer for liboggplay. We also found Cristian Adam as the new maintainer for the DirectShow filters (oggcodecs).

Now that the basic Ogg Theora/Vorbis support for the HTML5 <video> element is starting to be available in all major browsers (well, as soon as an ActiveX control is implemented for IE), we can finally move on to develop the bigger vision. This is why I am an invited expert on the W3C media fragments working group and why I am working with Mozilla on sorting out accessibility for <video>. Accessibility is an inherent part of making video searchable. So, if we can find a way to extend the annotations with hyperlinks, we will also be able to build Webs of videos and completely new experiences on the Web. Think about mashing up simply by creating a list of URLs. Think about tweeting video segments. Think about threaded video email discussions (Shane should totally include that into Google Wave!). And think about all the awesome applications that come to your mind that I haven’t even thought about yet!

I spent this week at the Open Video Conference in New York and was amazed about the 800 and more people that understand the value of open video and the need for open video technologies to allow free innovation and sharing. I can feel that the ball has got rolling – the vision developed almost 10 years ago is starting to take shape. Sometimes, in very very rare moments, you can feel that history has just been made. The Open Video Conference was exactly one such point in time. Things have changed. Forever. For the better. I am stunned.

First draft of a new media fragment URI addressing standard

Those who know me well know that a few years ago (in fact, almost 10 years now) we developed the Annodex set of technologies at the CSIRO in a project called “Continuous Media Web”.

The idea was to make time-continuous data (read: audio and video) a integral part of the Web. It would be possible to search for media through standard search engines. It would be possible to link into and out of media as we link into and out of Web pages. It would be possible to mash up video from different Web servers into a single media stream just like we are able to mash up images, text and other Web resources from different Web servers.

As you are all aware, we have made huge steps towards this vision in the last 10 years. We now have what is called “universal search” – search engines like Google and Yahoo don’t return only links to HTML pages any longer, but return links to videos and images just as well.

But it doesn’t go far enough yet – even now we still cannot link into a long-form video to the right fragment that has the exact context of what we have been searching for.

In the Annodex project we implemented a working version of such a deep universal search engine in the year 2003 on top of the Panoptic search engine (a enterprise search engine developed by CSIRO, later spun out and now sold as Funnelback).

The basis for our implementation was the combination of specifications that we developed around Ogg:

  • An extension on Ogg that allows to create valid Ogg streams from subparts of Ogg streams – this is now part of Ogg as Skeleton.
  • A means of annotating Ogg streams with time-aligned text that could be interleaved with the Ogg media stream to produce streams that knew more about themselves – the format was called CMML for Continuous Media Markup Language.
  • And an extension to the URI addressing of Ogg streams using temporal URIs.

I am very proud that in the last 2 years, the development of a generic media fragment URI addressing approach has been taken up by the W3C and Conrad Parker and I are invited experts on the Working Group.

I am even more proud that the Working Group has just published a First Public Working Draft of a document called “Use cases and requirements for Media Fragments“. It contains a large collection of examples for situations in which users will want to make use of media fragments. It defines that the key dimensions of fragmentation that need to be specified are:

  1. Temporal fragmentation
  2. Spatial fragmentation
  3. Track fragmentation
  4. Name fragmentation

Beyond mere use cases and requirements, the document also contains a survey of technologies that address multimedia fragments.

In a first step towards the development of a Media Fragments W3C Recommendation, this document also discusses a proposed syntax for media fragment URI addressing and proposes different processing approaches. These sections will eventually be moved into the recommendation and are the most incomplete sections at this point.

To explain some of the approaches that are being proposed in more detail, here are some examples of media fragment URIs that are proposed through this WD:

  • http://www.example.com/example.ogv#t=10s,20s – addresses the fragment of example.ogv that lies between the 10s and the 20s offset
  • http://www.example.com/example.ogv#track='audio' – addresses the track called “audio” in the example.ogv file
  • http://www.example.com/example.ogv#track='audio'&t=10s,20s – addresses the track called “audio” on the subpart between the 10s and 20s offset in the example.ogv file
  • http://www.example.com/example.ogv#xywh=pixel:160,120,320,240 – addresses the example.ogv file but with a video track cut to a region of the size 320x240px positioned at 160x120px offset
  • http://www.example.com/example.ogv#id='chapter-1' – addresses the named fragment called “chapter-1” which is specified through some mechanism, e.g. Kate or CMML in Ogg

Note that the latter example works only if the encapsulation format provides a means of specifying a name for a fragment. Such a means is e.g. available in QuickTime through chapter tracks, or in Flash through cuepoints.

We know from our experience with Ogg that temporal fragmentation can be realized. For track addressing it is possible to use the recently developed ROE specification. The id tags used there could be included into Skeleton and then be used to address tracks by name. What concerns spatial fragmentation on Ogg Theora – I don’t think it can be achieved for an arbitrary rectangular selection without transcoding.

The next tasks of the Working Group are in creating implementations for these specifications on diverse formats and thus finding out which processes work the best.