WebRTC beyond Audio and Video

Silvia Pfeiffer Coviu

WebRTC Summit, 4th Nov 8:30am – 9:05am

S

A bit about me

diversible you went as becoment the

Apress:

are 1754/4 vide denied

What is WebRTC to you?

ls it ...

- . An SDK to develop voice and video mobile applications?
- 2. A means to include the browser in your unified communications solution?
- **3.** An extension-free way to re-write your video conferencing application?
- **4.** An opportunity for adding video/audio communications to your Web application?
- 5. A new Web API that Web developers need help with?

Are you even using the data channel?

What does data sharing mean to you?

• File sharing ?

• Screensharing ?

• What is WebRTC to the Web? • Google's original motivation: video conferencing for the Web

• What it really is: A novel paradigm: peer-to-peer

Every browser is a (potential) server

- Every browser can share files
- Every browser can share construction
- Distributed computing for the Web

Distributed Computing Characteristics

concurrency of components

(decentralisation)

lack of a global clock

independent failure of components

• Decentralisation of data Decentralisation

• No central storage, efficiency

- High availability
- Privacy of data
- Scalability
- Decentralisation of computing
 - Parallel computing
 - Scalability

Decentralisation of communication channels

• Decentralisation of data

No central storage: search is more difficult

- Potential for lower availability
- Decentralisation of computing
 - Parallel computing complexity
 - Coherence
- Decentralisation of communication channels
 - Not coolable

P2P Applications of WebRTC

I.Video & Data streaming CDNs

Iblast FDN | Viblast Player

How it works

Provide video file on a server via HTML5 MSE

 Every user gets the video segment information from the server

•Every user also turns into a server

•All users share video file segments with each other via HTML5 MSE and WebRTC

OUR VIDEO STREAMING CDN

Demo: https://www.peer5.com/video?=blg190215

P2P CDN goals

Low-latency downloads

- Fast discovery: rely on server
- Robustness towards peak usage
- Less server infrastructure
- Less bandwidth use for publisher

Challenges for P2P CDN approaches

Video consumer may object to

•Uncontrolled use of upstream bandwidth

QoS for video consumer may degrade

•Limited by upload speed of others

2.Webtorrent: Bittorrent for the Web

Instant.io - Streaming file transfer over WebTorrent

Download/upload files using the WebTorrent protocol (BitTorrent over WebRTC). This is a beta.

Start seeding

Drag-and-drop a file (or files) to begin sharing. Or choose a file: Choose Files No file chosen

Start downloading

Download from a magnet link or info hash magnet: * Download

WebTorrent is powered by JavaScript and WebRTC. Works in Chrome, Firefox, and Opera (desktop and Android).

Code is available on GitHub under MIT License. Run localStorage.debug = '+' in the console and refresh to enable verbose logs.

Webtorrent: How it works

Provide file through browser (seed)

 Webtorrent creates the torrent file, i.e. a DHT of chunks of the file

Share the magnet URI of the torrent file with others

New users at the magnet URI start leeching and seeding

Web/Bittorrent goals

No servers / pure P2P

Sharing economy

- Parallel download instead of server limits
- Avoid server infrastructure
- Minimal bandwidth use for publisher

Challenges for Webtorrent approaches

- User may object to uncontrolled use of upstream bandwidth (leads to freeriders)
- Need to leave browser open to continue seeding
- Distribution relies on a large number of participants
- Latency through distributed nodes
- Limited security only publicly available content

3. P2P for Video Collaboration?

• Edit token servaises annotations between on endpoints

 Server keeps track of changes and holds ground truth

• Token request and release introduces

Document locking

• Taking turns

• Unresponsive UX

Properties of P2P Collaboration

Collaborate on annotations in parallel

•Unsynchronised clocks

Reliable communication is not guaranteed

Participants drop out and return, new ones join

• Eventually everyone needs to see the same state

How to achieve consistency

 The order per endpoint matters: monotonically increasing system state

 Broadcast state update to everyone else (gossip protocol)

The result between peers is commutative

CRDT = commutative replicated data type

Consistent shared state: {L1, L2, L3, L4}

Duplication detection

Consistent shared state: {L1, L2, L3, L4}

Disconnect & Reconnect / Late connect

Consistent shared state: {L1, L2, L3, L4}

P2P Collaboration goals

• No servers / pure P2P

Sharing in a safe environment: security and privacy

• Fastest way to share annotations

• Avoid server infrastructure

• Minimal bandwidth use for publisher

P2P is a new paradigm on the Web:
File sharing

Richer collaboration

• Advantages are clear:

Security & Privacy

Speed in parallelisation

Server-less introduces scalability

• Challenges:

Silvia Pfeiffer Coviu

ŵ

silvia@coviu.com

S

@CoviuApp @silviapfeiffer